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Abstract. Dietary habits are closely correlated with people’s health.
Study reveals that unhealthy eating habits may cause various diseases
such as obesity, diabetes and anemia. To help users create good eating
habits, eating moment monitoring plays a significant role. However, tra-
ditional methods mainly rely on manual self-report or wearable devices,
which either require much user efforts or intrusive dedicated hardware.
In this work, we propose a user effort-free eating moment monitoring
system by leveraging the WiFi signals extracted from the commercial
off-the-shelf (COTS) smartphones. In particular, our system captures
the eating activities of users to determine the eating moments. The pro-
posed system can further identify the fine-grained food intake gestures
(e.g., eating with fork, knife, spoon, chopsticks and bard hand) to esti-
mate the detailed eating episode for each food intake gesture. Utilizing
the dietary information, our system shows the potential to infer the food
category and food amount. Extensive experiments with 10 subjects over
400-minute eating show that our system can recognize a user’s food in-
take gestures with up to 97.8% accuracy and estimate the dietary mo-
ment within 1.1-second error.
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1 Introduction

Dietary behavior is an important factor of healthy eating and is closely related
to the health condition of an individual. Due to the increasing stress at work
and the fast-paced lifestyle in the modern society, people tend to form unhealthy
eating habits unconsciously, such as overeating and eating disorder, leading to
weight-gain or obesity. Studies show that overweight and obesity are the most
prevalent health problems, which further cause various diseases such as diabetes,
high blood pressure, cardiovascular diseases and breathing disorder [1, 2]. Recent
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survey by the World Health Organizations reveals that more than 1.9 billion
adults are overweight and 650 million are obese [3], and they are suffering or
under the risk of the various eating-related health problems. Therefore, it is
crucial to provide an appropriate assistance to each individual for improving
their dietary behaviors. To achieve this goal, we need to help the user to keep
close track of every moment of his/her eating activities.

Eating moment monitoring provides the comprehensive dietary information
to help users understand their eating behaviors (e.g., overeating, undereating,
skipping meals, irregular eating schedules and eating too fast). Based on that,
users could realize the overall health condition in regard to his/her eating behav-
ior and further boost their ability to create and sustain a healthy lifestyle. Tradi-
tional eating moment or eating episode monitoring mainly rely on the self-reports
including food questionnaires and meal records [4]. For example, a mobile appli-
cation called ate [5] allows users to track their dietary information regarding the
food category by capturing the food photos from cameras. However, self-report
approaches require proactive participation and self-consciousness which seems
to be obtrusive for the users. Moreover, these instruments suffer from subjective
bias and memory imprecision [6]. To provide automatic eating moment moni-
toring without requiring much user efforts, recent studies propose to leverage
the wearable devices worn on the user’s ear [7] or wrist [8] for dietary activ-
ity recognition. Unfortunately, there are some limitations since the dedicated
wearable devices also incur high-cost issues and bring additional uncomfortable
user experience to individuals. Different from the above studies, in this work,
we propose to leverage the WiFi signals extracted from the user’s smartphones
to provide fine-grained dietary moment monitoring. While eating, user can sim-
ply place his/her personal smartphone on the dining table, which automatically
recognizes the food intake gestures to monitor the user’s eating moments.

Recent years have witnessed the initial success of WiFi-based human activity
sensing [9–11]. But in order to utilize the WiFi signals to automatically recognize
the user’s dietary moments, a number of challenges need to be addressed: 1)
to monitor the user’s eating moments, we need to recognize the user’s eating
activities from the many other daily activities. But it is hard for a smartphone
to store a large activity profile covering all the user’s daily activities such as
typing, reading, sitting and stretching; 2) besides recognizing the coarse eating
moments, fine-grained eating moment monitoring also require differentiating the
user’s various food intake gestures (e.g., eating with a folk, chopsticks or bare
hand), which reflects the user’s detailed eating behavior and information of the
food. But the various eating gestures are similar and hard to be distinguished
from the WiFi signals, which all involve the hand movements from the table to
mouth; 3) using the WiFi signals from the smartphone to provide human activity
recognition is still an open area. This is because the WiFi signals obtained by
the smartphone is relatively weak and noisy due to the integrated small size of
internal antennas.

To address these challenges, we propose a WiFi-enabled automatic dietary
moment recognition system for assisting the individuals to improve dietary be-
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haviors by using their own smartphones. We extract the Channel State Infor-
mation (CSI) from the WiFi signals to capture the user’s fine-grained eating
activities and estimate the detailed eating moments, which is non-invasive to the
user and does not require additional hardware. Specifically, we utilize a Fuzzy
C-Means clustering method to distinguish the dietary activities from the many
other human daily activities and detect the dietary moments based on deriving
the CSI spectrogram. Moreover, we extract the unique features to capture the
eating gestures’ behavioral characteristics and further classify them based on the
utensils held by the user (i.e., fork, knife, spoon, chopsticks and bare hand). In
addition, we derive the starting and ending point of the eating moment for each
eating gesture and estimate the duration and speed for meals.

Our contributions are summarized as follows:
• We demonstrate that the channel state information extracted from the WiFi
signals can be used to provide fine-grained eating moment monitoring for the
users, which can further interpret the user’s eating behavior, including overeat-
ing, undereating, eating disorder and eating too fast.

•We develop a device-free dietary recognition system based on the WiFi signals
to automatically track the user’s eating activity, which can be easily deployed
on the user’s smartphone without incurring additional costs or changing the
existing WiFi infrastructures.

• We adopt the Fuzzy C-means clustering technique to differentiate the dietary
activities from all human daily activities. We then utilize different machine learn-
ing classification approaches (i.e., Random Forest, Naive Bayes, K Nearest Neigh-
bors, Discriminant Analysis Classifier) to identify the food intake gestures based
on the utensils held by users. Moreover, we propose an intake gesture density
derivation method to calculate the comprehensive dietary moments and develop
the ingestion period estimation method to derive the dietary moment statistics.

• Extensive experiments with 10 people over 400-minute eating show that our
system can recognize a user’s food intake gestures with up to 97.8% accuracy
and estimate the dietary moments within 1.1 second error.

2 Related Work

The exploit of dietary monitoring methods provokes the feasibility to infer the
health condition of subjects based on eating. Traditional eating monitoring meth-
ods are mainly based on self-report or meal recalls. These methods require users
to manual write down the start/end time of their eating activities on food diaries
or fill questionnaires by recalling their memory [12]. The smartphone Apps allows
the user to more flexibly record their meal by typing texts and taking photos [5].
But these self-report methods rely too much on the user’s active participation
and impose a memory burden. Thus these methods are obtrusive to the users
and hard to obtain the timely precise eating monitoring result. Moreover, these
methods suffer from the subjective bias and memory recall imprecision.
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To reduce the user’s efforts, the vision-based methods are developed to rec-
ognize eating activities automatically by utilizing the cameras to take photos
or videos of the user’s meals [13]. For example, O’Loughlin et al. [14] examine
the feasibility of utilizing the Microsoft SenseCam [15] (i.e., a wearable cam-
era) to estimate the dietary energy intake within various sporting populations.
However, these approaches may raise some privacy concerns due to the fact that
camera could capture the user’s personal sensitive information such as social
relationships (i.e., eating with whom) and location privacy (i.e., where).

Recently, some wearable device based approaches have been proposed to
detect the user’s eating periods by leveraging the embedded sensors (e.g., mi-
crophones and motion sensors). Sazonov et al. [7] develop a system utilizing the
piezoelectric sensor attached to the ear to detect the chewing and swallowing.
Similarly, Bedri et al. [16] design an eating episode detection system by uti-
lizing a dedicated ear-worn device, which is equipped with an inertial sensor
behind the ear to detect people’s dietary motions. Rather than the ear-worn
sensor, Thomaz et al. [8] use the accelerometer on a smartwatch to infer eating
moments to capture the user’s hand motions during dietary period. Along this
direction, Zhang et al. [17] propose a dedicated wearable device using wireless
accelerometers attached on both wrists of users to detect the eating/drinking
activities based on the three-dimensional kinematics movement model. Unfortu-
nately, these wearable-based methods requiring the user to equip with dedicated
hardware platforms during eating, which are obtrusive to users and also shows
the limitation of their deployments in the practical scenarios.

Our work is different in that we propose a low user-effort dietary moments
recognition system by leveraging the WiFi signals extracted from the user smart-
phone, which is a pervasive mobile device. Our system is low-cost and easy-to-use
without additional dedicated devices or professional installations. Specifically,
the proposed system could detect the eating episode on a daily life, including
the starting/ending time of each meal, which provides an automatic solution to
track the user’s dietary schedule. Moreover, the system could identify the uten-
sils held by the participants (e.g., folk and spoon) during the intake period and
further segment the dietary moments into detailed eating episodes according to
different utensils. Based on the comprehensive dietary information, it shows the
potential to further infer how and what the users eat and measure the dietary
behaviors of users.

3 System and Methodology

3.1 System Overview

The main goal of our work is to let user simply place his/her smartphone on
the dinning table to achieve automatic fine-grained eating moment monitoring.
The basic idea is to recognize the dietary moments by extracting the unique
physiological and behavioral characteristics inherited from food intake gestures
by leveraging the readily available WiFi signals. As illustrated in Figure 1, the
system takes the CSI measurements extracted from the personal mobile devices
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Fig. 1. Overview of the proposed system for eating moment monitoring.

(i.e., smartphones) as the input. To mitigate the ambient noises and reduce the
influence of wireless interference, we apply Noise Removal techniques to remove
the outliers of CSI raw data and reduce the high and low frequency noises us-
ing a bandpass filter. Next, our system performs Dietary Activity Detection to
distinguish the relative eating activities from many other daily human activities
(e.g, walking, reading, talking) in the environment. Specifically, we examine the
moving variance and accumulated short time energy (STE) of the calibrated
CSI data to obtain the segments containing the user’s daily activities. We then
develop the Fuzzy C-means Clustering method to recognize the dietary activ-
ities in a cluster and differentiating them from non-eating activities based on
calculating the Euclidean distance between eating cluster center and the test
activity. To further identify the specific food intake gestures (i.e., eating with
fork, spoon, knife, chopsticks and bare hands) of the user, the system extracts
unique features from both time and frequency domains to capture the inherent
physiological and behavioral characteristics of user’s motions. Base on the ex-
tracted features, we perform Food Intake Gesture Classification to recognize the
user’s different eating gestures. We test several different machine learning clas-
sifiers including Random Forest (RF), Naive Bayes (NB), K Nearest Neighbors
(KNN), Discriminant Analysis Classifier (DAC), respectively. The last compo-
nent Eating Moment Estimation estimates the food intake period of the user
to infer the eating schedule and further divide the eating moments according to
different eating gestures to estimate eating episode of each gesture. The eating
gestures reflect how and what the user eats, for example eating steak with knife



6 Z. Lin et al.

and a burger with bare hand. In addition, the number of each eating gesture is
derived, which helps to know how much the user eats as well as how fast the
user eats.

3.2 Data Collection and Noise Removal

CSI measurements are readily available from some commodity WiFi network
interface controller (NIC) such as the Intel 5300 NIC. In order to perform au-
tomatic eating moment monitoring, we utilize the CSI measurements extracted
from a subject’s smartphone, to capture the minute differences of the channel
state variations induced by a subject’s food intake gestures. The intuition is
that CSI measurement describes how a WiFi signal propagates over multiple
subcarriers from a pair of transmitter and receiver. In addition, it represents the
combined effect of scattering, fading, and power decay with distances. Specially,
the CSI measurements in regard to each subcarrier can be denoted as:

Hk = |Hk| ej
6 Hk , (1)

where |Hk| and 6 Hk describe the corresponding amplitude and phase. They
represent the signal interference impacted by the human body movements, in-
cluding absorption, reflection and refraction by food intake gestures. However, a
subject’s eating activity is very complicated since people perform different ways
using their arm to take food from plate to mouth. Besides, the intake process
may involve different utensils (i.e., spoon, fork, knife, and chopsticks), increasing
the difficulty to perform fine-grained eating recognition. In that case, we need
to extract more information based on the raw CSI measurements to provide an
accurate description of the wireless signals.

Since the existing of ambient noises in daily dining environments, the WiFi
signals also suffer from signal scattering and wireless interference. To mitigate
the ambient noises on the CSI measurements, our system first applies a band-
pass filter to remove the noises of high-frequency and low-frequency to ensure
the reliability of WIFI signals. According to our observations the frequency of
relative environment noises usually present in a fixed frequency range, we thus
utilize an empirical threshold to remove the ambient noises.

3.3 Dietary Activity Detection

Daily Activity Detection and Segmentation After removing the irrelevant
ambient noises, we perform daily activity detection and segmentation on the CSI
measurements that mapping the wireless signal with the people’s daily activities.
Inspired by experiment observations, we find that human activities (i.e., walking,
standing) involved the body movements lead to some vibrations on the CSI raw
data. However, the variances caused by body movements usually present as a
non-obvious pattern and hard to be detected. Moreover, dietary activities (e.g.,
using fork to bring food from dining table to mouth) usually involved minute
scale body movements than walking activities, which increases the difficulty of
detection. To enlarge the variances in original CSI measurements, we thus adopt
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Fig. 2. Accumulated power spectral
density of CSI in frequency domain.
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Fig. 3. Illustration of the STE-based
activity detection and segmentation.

a spectrogram-based approach to calculate the short time energy (STE) upon
CSI amplitude’s moving variance to detect human activity. As shown in Figure 2,
we derive the STE by calculating the integration of power spectral density along
the frequency domain. Additionally, STE approach is more sensitive to human
body movements by reconstructing the minute motions within a sliding window,
which also enlarges the variances in frequency domain upon CSI measurements.
We calculate STE by the following formula:

STE(δ) =

I∑
i=1

[PSD(δ)W (δ + i)]2, (2)

where PSD(δ) represents the power spectral density function, W (δ) denotes
the window function and I is the length of the sliding window. Figure 3 shows
the segments of human activities (i.e., use bare hands to bring food to mouth).
It is obvious that STE demonstrated as great values when the dietary activity
occurs. Moreover, we found there are some peaks always locate at the center of
the activity duration. Inspired by this, we define the two adjacent zero points to
segment the corresponding human activities.

Fuzzy C-means Clustering After detecting all of the daily activities from
users, we apply an unsupervised clustering method to further differentiate the
related dietary activities from the human daily activities. The basic idea is the
dietary activities are defined as the arm and hand gestures involved in bringing
food to the mouth from a dining table, which are tiny movements and similar to
each others. However, other daily activities such as walking or standing involved
large body movements (e.g., swing arms, bending over) might conduct more
intensive vibrations in the frequency domain of CSI measurements. Motivated
by this, we then examine to use the Fuzzy C-Means Clustering (FCM) approach
to assort the data into two clusters based on two-dimensional features including
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Fig. 4. Fuzzy C-Means cluster results of eating activity and non-eating activity.

the PSD Amplitude and corresponding frequency of these activities. The FCM-
based Clustering could be described as:

Υm =

A∑
i=1

N∑
j=1

µm
ij‖Ai − Cj‖2, (3)

where A denotes the number of human activity segments, N is the number
of clusters, m denotes the fuzzy partition matrix exponent of controlling the
degree of fuzzy overlap, Ai represents the ith activity segments, Cj denotes the
center of the jth cluster, µij represents the degree of membership of Ai in the
jth cluster.

In order to understand the distribution of participants dietary activities and
other daily activities, we first ran a formative study with 2 participants to per-
form 10 different motions in lab environment. Participants were requested to eat
a variety of foods including chips, pizza, bread and noodles with their bare hands,
forks, chopsticks. Moreover, we ask participant to perform some non-eating ac-
tivity including walking, standing, sitting, talking, reading, typing, stretching,
respectively. Figure 4 shows the clustering results regarding eating activities
and non-eating activities. We note that the proposed approach could successful
differentiate the activities into two clusters. In addition, we observe the eat-
ing activities are mainly gathered in the lower range of duration period than
non-dietary activities are located in the higher range. This is because during
the ingestion period, participants keep bringing food to mouth in a repetitive
manner, and the eating motions performed by participants usually take faster
than other non-dietary activities such as the walking. Based on the differenti-
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Fig. 5. Illustration of our experimental setting.

ate results, we thus can utilize the derived dietary activities to further process
fine-grained classification in terms of the utensils held by users.

3.4 Food Intake Gesture Classification

In our system, recognizing various food intake gesture is essential for deriving
find-grained statistic information and further detecting eating moments. Among
this section, we adopt various machine learning classifiers to identify different
eating gestures. We first extract a series of features both from time and fre-
quency domains from thirty subcarriers and then derive two-dimensional vec-
tors as the inputs of multiple classifiers. In order to motivate the suitability of
the proposed method with different machine learning algorithm, we apply four
kinds of typical machine learning methods (i.e., Random Forest (RF), Naive
Bayes (NB), K Nearest Neighbors (KNN), and Discriminant Analysis Classifier
(DAC)) to recognize various eating gestures according to the utensils held by
the user, including spoon, fork, fork&knife, hand and chopsticks. The machine
learning algorithms are implemented based on the Statistics and Machine Learn-
ing Toolbox of Matlab R2019a. We further evaluate the performance of the four
traditional classifiers and discuss the results in Section 4.2.

3.5 Eating Moment Monitoring

Our intuition of monitoring the eating moment for users is to further estimate
the accurate ingestion duration between the interval of each separate food intake
gestures. Study [18] shows that the eating speed is positively associated with
body weight-gain, indicating that the fast eating speed might increase the risk
of overweight and obesity. Thus, it is essential to obtain the fine-grained ingestion
period statistics (e.g., the duration time for participants to eat with fork, spoon
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Fig. 6. Comparison of performance among four kinds of machine learning classifiers
for food intake gestures identification.

or chopsticks) to further elaborate and evaluate the user’s eating behaviors.
Given that intuition, we adopt the intake gesture density derivation method to
infer the eating moment based on calculating the density of detection food intake
gestures when applying a sliding window in a specific eating period length. To
compare the prediction estimated dietary duration with the ground truth, we
evaluate the detailed results of eating moment monitoring in Section 4.3.

4 Performance Evaluation

4.1 Experimental Methodology

As shown in Figure 5, we implement our system with a pair of WiFi-enabled
devices, including a smartphone and a laptop. Our system aims to imitate the
real scenario when people are eating and placing their smartphones on the dining
table. In the system, user’s smartphone will send WiFi signals to the access point
and sense different eating activities. To conduct experiments, we use a Nexus 6
smartphone powered by a 2.7 GHz quad-core Snapdragon 805 processor with 3
GB of RAM as the transmitter. For the receiver, we use a Dell E6430 equipped
with Intel 5300 802.11n WiFi wireless card and 6dBi rubber ducky external
omni-directional antennas for extracting CSI readings [19]. The laptop which
serves as the access point is configured to run in the netlink mode. Internet
Control Message Protocol (ICMP) echo is sent from the laptop and replied by
the smartphone to collect the CSI data [20]. In total, 10 volunteers are recruited
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as the subjects to take part in the experiments and finally we collect 400 minute
length data for eating episode. Moreover, the distance between the laptop and
the smartphone is 80 cm. Unless mentioned otherwise, half of the collection data
is used for training and the rest for testing.

4.2 Performance of Food Intake Gesture Classification

We first compare the performance of food intake gesture classification under four
typical machine learning classifiers including Random Forest (RF), Naive Bayes
(NB), K Nearest Neighbors (KNN), and Discriminant Analysis Classifier (DAC).
The parameters of each classifier are tuned to achieve the best performance. As
shown in Figure 6, for eating gesture recognition, all the classifiers achieve av-
erage accuracy over 80%, indicating that our model could perform well with
various classifiers. Specifically, NB, KNN, RF and DAC have average accuracy
of 82.1%, 93.6%, 95.2%, 97.8%, respectively. We observe that DAC achieves the
best eating gesture identification results. For each eating gesture as depicted
in Figure 7, the DAC achieves average accuracy of 90%, 94%, 100%, 97% and
100% for five eating gestures (i.e., spoon, fork, fork&knife, hand, chopsticks).
The experimental results show that various eating gestures can all be well recog-
nized by the proposed system. Furthermore, we evaluate the impact of different
training sizes on the eating gesture recognition. Figure 8 shows that our system
could achieve over 80% accuracy under different training sizes and even 7 eating
motions is sufficient to produce over 80% accuracy, which further confirms the
effectiveness of our system.
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4.3 Performance of Eating Moment Monitoring

Coarse Eating Moment Recognition To determine the starting point and
the ending point of eating moment, we first evaluate our system performance
on distinguishing eating activities from non-eating activities. Figure 9 provides
a detailed picture of the FCM-based cluster performance with different m value,
where m denotes the fuzzy partition matrix exponent of controlling the degree of
fuzzy overlap. As shown in the figure, our system achieves an accuracy over 90%
whenm is over 1.6. We also note that our system achieves 95% accuracy on eating
and non-eating activity recognition given an m value of 2.4. This is because m
represents the average coefficient related to the distribution clustering results
and enlarging value of m could convey more controlling degree to maximize the
distances between different clusters and minimize the inner distance of clusters
regarding the eating activities and non-eating activities.

Intake Gesture Moment Estimation Then we evaluate the performance
of dietary moment recognition for different food intake gestures. In our experi-
ments, each participant is requested to eat a variety of foods with five kinds of
gestures for multiple times. In particular, each gesture will be repeated for 40
times and we collected 200 eating activities for each person in total. As shown in
Table 1, the average estimated time duration of using spoon, fork, fork&knife,
hand, and chopsticks are 5m 43s, 5m 34s, 7m 57s, 6m 37s, 6m 34s respectively.
While the corresponding ground truths are 5m 20s, 5m 52s, 8m 11s, 5m 53s, 6m
18s respectively. And the ground truths are measured and verified by camera
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Fig. 9. The performance of dietary activity extraction under various fuzzy partition
matrix exponent of FCM clustering.

based method during the experiment. We find that the estimated error of five
intake gestures are 23s, 18s, 14s, 44s, and 16s. In particular, the average dura-
tion error of one single eating gesture is within 1.1s. Through analyzing the time
duration of each eating gesture, we can have a comprehensive understanding of
the dietary moment for each user. Based on the derived fine-grained dietary
statistics, it is easy to infer other high-level information such as the estimation
of calories intake, analysis of nutritional balance. In addition, the detailed di-
etary information can also be used to assist various health related problems such
as cardiovascular diseases, diabetes, stomach cancers.

Table 1. The average duration of each eating gesture across all users.

Eating
Gesture

Estimated Eating
Moment

Ground
Truth

Estimated
Error

Average Estimation
Error for Each Gesture

Spoon 5m 43s 5m 20s 23s 0.58s
Fork 5m 34s 5m 52s 18s 0.45s

Fork&Knife 7m 57s 8m 11s 14s 0.35s
Hand 6m 37s 5m 53s 44s 1.1s

Chopsticks 6m 34s 6m 18s 16s 0.4s
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5 Conclusion

In this paper, we explore the feasibility of leveraging WiFi signals from smart-
phones to automatically monitor the fine-grained eating moments. We show that
the channel state information extracted from a user’s smartphone could be uti-
lized to detect eating activity and further identify different food intake gestures
based on the utensils held by users. The statistical dietary information could be
used to interpret the detailed intake duration and utensil types during eating
period. It also shows the potential to provide the comprehensive understanding
with users regarding their eating behaviors and help them to build a healthy di-
etary pattern. We develop a device-free system, which first differentiates eating
activities from non-eating activities based on a fuzzy c-means clustering method.
We then utilize the learning-based methods to classify the user’s food intake ges-
tures according to the utensils held by the user with four different classifiers (i.e.,
Random Forest, Naive Bayes, K Nearest Neighbors and Discriminant Analysis
Classier). Furthermore, we derive the food intake duration and further estimate
the eating moments for each food intake gesture. Extensive experimental results
with 10 subjects over 400-minute eating period show that our system can recog-
nize the user’s food intake gestures with up to 97.8% accuracy and estimate the
dietary moments within 1.1-second error.

Acknowledgment. This work was supported by the National Science Founda-
tion Grant CNS-1826647.
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